Decanter AI 設備預測性維護

預測性維護利用 AI 分析機台設備的數據,並判斷機器是否即將發生錯誤或故障,藉此協助企業預測設備異常可能時間點,並依據異常時間提前發出警告,幫助客戶即時進行維護檢修。

立即諮詢

為何需要 AI 預測機台設備異常?

在製造業場域中,存在多種的生產設備,需花費大量成本定期或依經驗維護。定期維護可能在機台壽命健康下進行而產生零件成本浪費,且非維護期間若發生異常,將造成非計劃性風險。企業在監控機台設備異常時將遇到以下困難:

準確預測

人工設備監控造成高成本

準確預測

設備異常衍生之維修成本和稼動率降低之高損失

準確預測

非預期性零件磨損或老化,導致設備精度失控,
嚴重影響生產品質良率

Decanter AI 設備預測性維護解決方案

設備預測性維護解決方案協助企業掌握機台異常時間點,企業只需蒐集機台相關數據,透過 Decanter AI 的自動化分析、建模及預測,即可產出機台未來潛在狀況,幫助企業優化其產線分配策略,以實踐工廠永續管理。

Step1 

數據準備

  • 設備基本信息
  • 設備異常事件標記
  • 設備運行狀態
  • 傳感器實時參數數據

Step 2

建立模型

  • 預測設備未來是否異常
  • 預測設備剩餘壽命

Step 3

結果分析與應用對接

  • 設備異常重要因子分析
  • 餘命預測
  • 維護資源限制
  • 終端設備串接

方案優勢

準確預測

以機器為單位進行預測,模型準度達 80%;
以未來一個月為區間進行預測,模型準度達 70%

有效預防每月產線可能停線風險

約有 70% 的異常機台設備可在一個月前提前掌握,
工廠可於異常發生前進行維護或開啟備用設備

流程改善

找出影響幫補異常狀況之重要因子(運行時間)

立即試用

為您評估最適合的應用場景

聯絡我們